The System LaPO₄-K₃PO₄

WANDA JUNGOWSKA AND TERESA ZNAMIEROWSKA

Department of Inorganic Chemistry, Faculty of Engineering and Economics, Academy of Economics, 53345 Wrocław, Poland

Received October 18, 1990

The phase diagram of system LaPO₄-K₃PO₄ has been determined by differential thermal, X-ray, and microscopic methods. The system contains only one intermediate compound, K₃La(PO₄)₂, which melts incongruently at 1500°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1215°C. It was confirmed that the low-temperature modification of this compound has a monoclinic unit cell with parameters a = 9.632(5), b = 5.660(2), and c = 7.514(3) Å; $\alpha = 90^{\circ}$, $\beta = 90.55(3)^{\circ}$, and $\gamma = 90^{\circ}$; V = 409.62 Å³. © 1991 Academic Press, Inc.

Introduction

The present study is the next step in our investigations on potassium-lanthanum phosphates. The research has been carried out for several years and was started because of the great interest in these compounds as new luminophore and laser materials. Until now, phase equilibria in that part of the system $La_2O_3-K_2O-P_2O_5$ which is rich in P_2O_5 , i.e., within the composition range $La(PO_3)_3$ -KPO₃-P₂O₅, have been examined in this laboratory (1, 2). Phase equilibria in the system $LaPO_4 - KPO_3 - La(PO_3)_3$ have been investigated as well, and its phase diagram has been determined (3). The present paper reports the results of our examinations on the binary system $LaPO_4 - K_3PO_4$. Its phase diagram has not been determined so far. Literature data show that double potassium-lanthanum orthophosphate K₃La $(PO_4)_2$ is known. This compound, according to its composition, occurs in the system La- $PO_4 - K_3 PO_4$ (as an intermediate compound). Reference (4) reports that $K_3La(PO_4)_2$ has a monoclinic unit cell with the parameters: a = 9.59, b = 5.66, and c = 7.49 Å; $\beta = 91.16^{\circ}$.

The alkali metal-lanthanide orthophosphates have interesting properties. Numerous literature sources report the existence of two types of binary orthophosphates: $M_3^{\rm I}M^{\rm III}({\rm PO}_4)_2$ and $M_3^{\rm I}M_2^{\rm III}({\rm PO}_4)_3$ (where $M^{\rm I}$ = alkali metals, $M^{\rm III}$ = lanthanides). Both types of these compounds, according to their composition, can occur in the systems $M^{\rm III}{\rm PO}_4 - M_3^{\rm I}{\rm PO}_4$.

Experimental

The samples in the binary system La $PO_4-K_3PO_4$ were prepared from lanthanum orthophosphate LaPO₄ and potassium orthophosphate K_3PO_4 . The following starting materials were used for synthesis of the orthophosphates: La(NO₃)₃ (Fluka), H₃PO₄ 85% analytical grade, and $K_3PO_4 \cdot 3H_2O$ analytical grade.

Lanthanum orthophosphate $LaPO_4$ was obtained from the following solution: 0.4

wt% of La₂O₃ (as La(NO₃)₃), 15 wt% of P₂O₅ (as H₃PO₄), and 84.6 wt% of distilled water (5). Potassium orthophosphate K_3PO_4 was obtained from $K_3PO_4 \cdot 3H_2O$ by heating at 900°C for 1 hr.

The investigations were carried out by differential thermal analysis (heating), powder X-ray diffraction, and microscopy in reflected light. Molten and sintered samples were used for thermal analysis. The high temperature thermal studies above 1400°C were performed in a horizontal resistance furnace with molybdenum winding, under argon. The test samples were presynthesized by the reaction in the solid phase. The initial components were mixed in the appropriate ratios, ground, pelletized, placed in platinum crucibles, sintered at 1000-1100°C, and then fused. Temperatures above 1400°C were measured by means of an optical pyrometer, which was calibrated against the melting points of Na_3PO_4 and $Ca_3(PO_4)_2$. In the thermal analysis a derivatograph type 3427 (MOM, Hungary) was used within the temperature range 20-1400°C. Temperatures were established by means of a Pt/Pt 10 Rh thermocouple, which was calibrated against the melting point of $Ca_2P_2O_7$, K_2SO_4 , and the transition point of K_2SO_4 (583°C).

The phase purity of the reagents and the phase structure of the products were studied by powder X-ray diffraction. The powder X-ray analysis was performed on an HZG-4 diffractometer with $CuK\alpha$ radiation.

Results and Discussion

Figure 1 shows the phase diagram of the system $LaPO_4-K_3PO_4$ determined within the temperature range 20-1800°C.

Samples from this system melt at high temperatures (above 1400°C). Therefore, the liquidus and solidus curves were estimated by observing the behavior of pellets in a horizontal furnace and by reading temperatures with the use of an optical pyrome-

FIG. 1. Phase diagram of the system $LaPO_4-K_3PO_4$: •, thermal analysis; x, optical. C = liquid.

ter. Equilibria in the solid phase were determined by thermal analysis on heating molten and sintered samples. Thermal and microscopic examinations showed that there is only one intermediate compound in the system. It is formed at the 1:1 molar ratio La $PO_4: K_3PO_4$ (52.42 wt% of LaPO₄, 47.58 wt% of K_3PO_4 ; i.e., $K_3La(PO_4)_2$. This double orthophosphate melts peritectically at approx. 1500°C. During differential thermal analysis of a sintered sample of stoichiometric composition of this compound, a very strong thermal effect appears on the DTA curve at 1240°C. With a molten sample, an analogous strong effect appears at 1215°C. This effect occurs in the system under investigation over the full examined composition range. We suppose it results from the polymorphic transition α/β -K₃La(PO₄)₂. The high-temperature modification (α) cannot be stabilized at room temperature by fast cooling in air or in ice.

The low-temperature modification, β -

 $K_3La(PO_4)_2$, was investigated with X-ray diffraction. X-ray powder data were carefully measured using a Guinier-de Wolff focusing camera (CuK α radiation, λ = 1.54184Å) and a powder X-ray diffractometer. The positions of the individual lines were determined from Guinier photographs. They were corrected and LSQ refined $(\alpha$ -Al₂O₃ being used as internal standard). Indexing was performed on the basis of the results of locally modified exhaustive procedures (6) and Ito's algorithm (7). After the effective splitting procedure had been applied to the diffraction pattern (8) and the intensities (9) had been compared with those predicted for the isomorphous replacement, the unit cell parameters were refined utilizing the uniquely ascribed peak positions. It was found that the low-temperature modification, β -K₃La(PO₄)₂, has a monoclinic structure (lattice type P), and cell parameters a = 9.632(5), b = 5.660(2), and c =7.514(3) Å; $\alpha = 90^{\circ}$, $\beta = 90.55(3)^{\circ}$, and $\gamma =$ 90°; V = 409.62 Å³. Table I presents the powder X-ray diffraction data of β- $K_3La(PO_4)_2$.

 $K_3La(PO_4)_2$ can be obtained by a solid state reaction when an equimolar mixture of the initial orthophosphates is sintered at 1100°C for 20 hr. This phosphate can be also formed by melting and then slow cooling of this mixture.

Literature reports vary on the subject of polymorphic transitions of potassium orthophosphate K_3PO_4 . Therefore, in 1981 (10) it was reexamined in our laboratory by thermal, dilatometric, and X-ray methods. The molten and sintered K_3PO_4 was investigated during cooling and heating. The results obtained indicate that K_3PO_4 exists in three polymorphic modifications. Transition temperatures in the molten compounds during cooling are as follows: α/β , 1066–1051°C and β/γ , 545°C; during heating: α/β , 1060–1150°C).

In the system $LaPO_4-K_3PO_4$, on the DTA curves during the heating of molten samples

within the composition range 50-70 wt% of K_3PO_4 , a not very strong thermal effect occurs at 1100°C. This effect does not appear in the part of the system rich in K_3PO_4 . There are also no effects connected with the transition β/γ -K₃PO₄. X-ray analysis of molten samples in the part of the system which is rich in potassium orthophosphate showed only the presence of the high-temperature modification α -K₃PO₄ and small quantities of β -K₃La(PO₄)₂. X-ray and thermal examinations (the distribution of melting points) of samples, within the composition range 75–100 wt% of K_3PO_4 , show that there is a limited solubility of the components in the liquid state above approx. 1600°C. It is manifested by the separation of the liquid into two liquid solutions, C_1 and C_2 . Over point B (Fig. 1), above the liquidus curve, there is a field of stability of liquid solutions with unlimited mutual solubility of components. In the ABM field, there is the stable mixture of liquid solutions, C_1 and C_2 . On the left of this field, over the liquidus curve, there is a monophase field of stability of liquid solution C_1 , and on the right there is a monophase field of stability of liquid solution C_2 . Between the liquidus curve and the solidus curve, there are two phase fields. At point M (called a monotectic point), at the constant temperature of approx. 1600°C (monotectic temperature), a monotectic reaction proceeds as follows: $C_{2M} \rightarrow K_3$ $PO_4 + C_{1A}$ (where: C_{2M} = liquid C_2 with the composition of point M, C_{1A} = liquid C_1 with the composition corresponding to point A).

According to Fig. 1, in the system La $PO_4-K_3PO_4$, a eutectic occurs at the content of 53 wt% of K_3PO_4 , at 1440°C. The peritectic reaction, which proceeds according to the formula C + LaPO₄ \rightarrow K₃La(PO₄)₂, ends at approx. 50 wt% of K₃PO₄.

Potassium orthophosphate K_3PO_4 is very hygroscopic. Therefore samples rich in K_3PO_4 absorb moisture easily. Hence, microscopic observations in reflected light

TABLE I

X-RAY ANALYSIS DATA FOR β -K ₃ La(PO ₄) ₂ Modification				hkl	$d_{\rm obs.}({ m \AA})$	d _{caic.} (Å)	Intensitie
hkl	$d_{\rm obs.}({\rm \AA})$	d _{calc.} (Å)	Intensities	322 104		1.838	
		7 50		131	1.797	1.836	10
101	1.4/	7.50	52	421	1.777	1.775	2
101	5.80	5.87	1	511		1 776	2
110	4.8/	4.88	28	230	1 757	1.773	14
200	4.80	4.81	8	114		1.756	14
111	4.09	4.10	10	204		1.757	
111	4.07	4.08	75	413	1 671	1.670	12
201		4.08	_	137	1.671	1.670	12
210	3.664	3.664	5	214	1.005	1.663	12
211	3.307	3.309	15	137	1 659	1.002	10
211	3.277	3.277	34	132	1.038	1.639	10
300	3.207	3.205	1	517	1.04/	1.043	8
112	2.984	2.986	100	220	1 607	1.048	• -
202		2.981		222	1.627	1.626	16
112	2.961	2.962	83	523		1.627	
301		2.965		212		1.628	
202	2.935	2.935	24	323	1.611	1.610	4
301		2.930		232	1.593	1.595	6
020	2.827	2.831	68	333		1.592	
310	2.792	2.789	79	520		1.591	
021	2.649	2.649	3	431	1.459	1.459	5
311	2.629	2.627	5	612		1.418	1
212	2.605	2.606	4				
311		2.602		Note	. Monoclinic s	system: $a = 9$	9.632(5), b =
302	2.459	2.457	6	5.660(2)), and $c = 7.514$	$4(3)$ Å; $\alpha = 90^{\circ}$,	$\beta = 90.55(3)^{\circ}$
103	2.431	2.430	14	and $\gamma =$	$= 90^{\circ}; V = 409.$.62 Å ³ .	
103	2.410	2.411	6				
221	2.315	2.314	16	could	he performe	d only with s	amples ric
401	2.301	2.300	7	in LaI	∞	d only with s	ampies ne
013	2.290	2.288	4		O_4 .		
022	2.260	2.260	7				
113	2.235	2.233	15	Ackno	wledgments		
203		2.235	15	The	uthors thank Dr	- I. Motuczowsk	for his sufficient
122	2 195	2 195	9	sive he	in in the V roy	avnommente T	lior his exter
411	2 134	2 131	14	included in the CPBP-01 18 problem and was final			
411	2.15	2.151	<u>0</u>	cially or	u in the Crbr-	Ministry of Notic	and was nnar
222	2.053	2.114	24	cially st	ipported by the I	ministry of Nauo	mai Education
213	2.055	2.053	24	-			
212	2 037	2.034	43	Refere	ences		
321	2.057	2.036	45	1 W	IUNCOWSKA AN	UD T. ZNAMERO	Wern Mata
402		2.030		Che	m Phys 74 45	101.20 AMIERC	WSKA, MUIE
402 202	1.050	2.059	0	2 W	HINCOWERA AN	T (1770).	The I
303 0 7 2	1.939	1.957	9	2. 11.	JUNGUWSKA AN	10 1. ZNAMIERO	WSKA, J. Inei
043	1.0/4	1.8/4	13	3 W	IUNGOWERA AN	(1990).	
212		1.875		J. W. CL	Phus 37 1	1, L NAMIERO	WSKA, Mater
212	1 050	1.8/3	10		WILLEE D E····	ד (1771). ד הוער זי	
522 501	1.858	1.856	18	4. ni.	WULFF, D. FIN	(E, AND L. SCHV	VARZ, Z. Phys
120	1.050	1.856		с <i>пе</i> 5 в	и. 202 , 1155 (1 Кикоман - 7	.701). 	
130	1.850	1.852	6	J. K.	$\mathbf{E}_{\mathbf{M}} = \mathbf{P}_{\mathbf{M}} \left(1077 \right)$	esz. Nauk. Poli	iech. Krakow
515	1.027	1.849	-	6 D	$(m, b(19/7), C = T + rms^{-1}$	I And C	. 11
123	1.837	1.836	6	о. D. (196	59).	J. Appl. Cry	stallogr. 17

- 7. J. W. VISSER, J. Appl. Crystallogr. 2, 89 (1969).
- 8. J. MATUSZEWSKI, "SPLIT," the program for splitting the composite X-ray powder profiles, unpublished program developed in our laboratory.
- 9. H. Y-P. HONG AND S. R. CHINN, *Mater. Res. Bull.* 11, 421 (1976).
- 10. T. ZNAMIEROWSKA, Polish J. Chem. 55, 747 (1981).